Functional expression of p-glycoprotein and multidrug resistance-associated protein (mrp1) in primary cultures of rat astrocytes

Author(s):  
X. Decl�ves ◽  
A. Regina ◽  
J.-L. Laplanche ◽  
F. Roux ◽  
B. Boval ◽  
...  
2004 ◽  
Vol 87 (4) ◽  
pp. 820-830 ◽  
Author(s):  
Claire Mercier ◽  
Xavier Declèves ◽  
Christophe Masseguin ◽  
Pascal Fragner ◽  
Marcienne Tardy ◽  
...  

1994 ◽  
Vol 14 (1) ◽  
pp. 277-286
Author(s):  
M Raymond ◽  
S Ruetz ◽  
D Y Thomas ◽  
P Gros

We have recently reported that expression in yeast cells of P-glycoprotein (P-gp) encoded by the mouse multidrug resistance mdr3 gene (Mdr3) can complement a null ste6 mutation (M. Raymond, P. Gros, M. Whiteway, and D. Y. Thomas, Science 256:232-234, 1992). Here we show that Mdr3 behaves as a fully functional drug transporter in this heterologous expression system. Photolabelling experiments indicate that Mdr3 synthesized in yeast cells binds the drug analog [125I]iodoaryl azidoprazosin, this binding being competed for by vinblastine and tetraphenylphosphonium bromide, two known multidrug resistance drugs. Spheroplasts expressing wild-type Mdr3 (Ser-939) exhibit an ATP-dependent and verapamil-sensitive decreased accumulation of [3H]vinblastine as compared with spheroplasts expressing a mutant form of Mdr3 with impaired transport activity (Phe-939). Expression of Mdr3 in yeast cells can confer resistance to growth inhibition by the antifungal and immunosuppressive agent FK520, suggesting that this compound is a substrate for P-gp in yeast cells. Replacement of Ser-939 in Mdr3 by a series of amino acid substitutions is shown to modulate both the level of cellular resistance to FK520 and the mating efficiency of yeast mdr3 transformants. The effects of these mutations on the function of Mdr3 in yeast cells are similar to those observed in mammalian cells with respect to drug resistance and transport, indicating that transport of a-factor and FK520 in yeast cells is mechanistically similar to drug transport in mammalian cells. The ability of P-gp to confer cellular resistance to FK520 in yeast cells establishes a dominant phenotype that can be assayed for the positive selection of intragenic revertants of P-gp inactive mutants, an important tool for the structure-function analysis of mammalian P-gp in yeast cells.


Hepatology ◽  
2000 ◽  
Vol 32 (2) ◽  
pp. 341-347 ◽  
Author(s):  
Seema Gupta ◽  
R. Todd Stravitz ◽  
William M. Pandak ◽  
Michael Müller ◽  
Z. Reno Vlahcevic ◽  
...  

2008 ◽  
Vol 295 (3) ◽  
pp. C807-C818 ◽  
Author(s):  
Siying Ye ◽  
Daniel P. MacEachran ◽  
Joshua W. Hamilton ◽  
George A. O'Toole ◽  
Bruce A. Stanton

P-glycoprotein (Pgp), a member of the adenosine triphosphate-binding cassette (ABC) transporter superfamily, is a major drug efflux pump expressed in normal tissues, and is overexpressed in many human cancers. Overexpression of Pgp results in reduced intracellular drug concentration and cytotoxicity of chemotherapeutic drugs and is thought to contribute to multidrug resistance of cancer cells. The involvement of Pgp in clinical drug resistance has led to a search for molecules that block Pgp transporter activity to improve the efficacy and pharmacokinetics of therapeutic agents. We have recently identified and characterized a secreted toxin from Pseudomonas aeruginosa, designated cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif). Cif reduces the apical membrane abundance of CFTR, also an ABC transporter, and inhibits the CFTR-mediated chloride ion secretion by human airway and kidney epithelial cells. We report presently that Cif also inhibits the apical membrane abundance of Pgp in kidney, airway, and intestinal epithelial cells but has no effect on plasma membrane abundance of multidrug resistance protein 1 or 2. Cif increased the drug sensitivity to doxorubicin in kidney cells expressing Pgp by 10-fold and increased the cellular accumulation of daunorubicin by 2-fold. Thus our studies show that Cif increases the sensitivity of Pgp-overexpressing cells to doxorubicin, consistent with the hypothesis that Cif affects Pgp functional expression. These results suggest that Cif may be useful to develop a new class of specific inhibitors of Pgp aimed at increasing the sensitivity of tumors to chemotherapeutic drugs, and at improving the bioavailability of Pgp transport substrates.


2000 ◽  
Vol 14 (3) ◽  
pp. 217-224 ◽  
Author(s):  
Naoki Utoguchi ◽  
Gurudatt A. Chandorkar ◽  
Michael Avery ◽  
Kenneth L. Audus

1994 ◽  
Vol 14 (1) ◽  
pp. 277-286 ◽  
Author(s):  
M Raymond ◽  
S Ruetz ◽  
D Y Thomas ◽  
P Gros

We have recently reported that expression in yeast cells of P-glycoprotein (P-gp) encoded by the mouse multidrug resistance mdr3 gene (Mdr3) can complement a null ste6 mutation (M. Raymond, P. Gros, M. Whiteway, and D. Y. Thomas, Science 256:232-234, 1992). Here we show that Mdr3 behaves as a fully functional drug transporter in this heterologous expression system. Photolabelling experiments indicate that Mdr3 synthesized in yeast cells binds the drug analog [125I]iodoaryl azidoprazosin, this binding being competed for by vinblastine and tetraphenylphosphonium bromide, two known multidrug resistance drugs. Spheroplasts expressing wild-type Mdr3 (Ser-939) exhibit an ATP-dependent and verapamil-sensitive decreased accumulation of [3H]vinblastine as compared with spheroplasts expressing a mutant form of Mdr3 with impaired transport activity (Phe-939). Expression of Mdr3 in yeast cells can confer resistance to growth inhibition by the antifungal and immunosuppressive agent FK520, suggesting that this compound is a substrate for P-gp in yeast cells. Replacement of Ser-939 in Mdr3 by a series of amino acid substitutions is shown to modulate both the level of cellular resistance to FK520 and the mating efficiency of yeast mdr3 transformants. The effects of these mutations on the function of Mdr3 in yeast cells are similar to those observed in mammalian cells with respect to drug resistance and transport, indicating that transport of a-factor and FK520 in yeast cells is mechanistically similar to drug transport in mammalian cells. The ability of P-gp to confer cellular resistance to FK520 in yeast cells establishes a dominant phenotype that can be assayed for the positive selection of intragenic revertants of P-gp inactive mutants, an important tool for the structure-function analysis of mammalian P-gp in yeast cells.


1991 ◽  
Vol 3 (6) ◽  
pp. 181-189 ◽  
Author(s):  
Gang Yu ◽  
Shakeel Ahmad ◽  
Angelo Aquino ◽  
Craig R. Fairchild ◽  
Jane B. Trepel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document